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Some pecularities of the results of nonstationary perturbation theory in the 
presence of a degenerate continuous energy spectrum axe considered. Their 
relevance to the ideology of the preceding articles in this series is discussed. 

In this work we shall extend the discussion begun in (T4) t to the case 
of a continuous degenerated energy spectrum. Such a spectrum is always 
present when one examines a closed physical system. In most cases of this 
sort one is interested in the possible scatterings and reactions in the system. 
Momentum and energy conservation is a fundamental requirement in such 
cases. We shal ! pay special attention to energy conservation here. 

In the continuous degenerated energy spectrum case one encounters 
some of the characteristic features of the different adiabatic models of 
inclusion of the particle interaction as in the discrete case. This can be seen 
after a relevant modification of the corresponding formulas for the differ- 
ent approximations of perturbation theory in the discrete case (we, cer- 
tainly, examine only cases when it is applicable). 

Denote by ]3 the set of parameters completely defining a nonperturbed 
state, by ~ the nonperturbed ("free") final state which is of interest to us 
and by ~P~0 the free initial state. The initial condition at t= t  i is then 
a~~ ti) = 8 ( f l -  Vo)( ~ ~ = f S ( f l -  Vo)qJ B dfl =~k~0) and the a th  correction a(.~)( t ) 
is given by 

a~)( t ) = -~ ftit f(,)V~o( t ')ei '~ a~- l ) (  t') dfl dt" (1) 

1The notations (T1)-(T4) in the text refer, respectively, to Papers I-IV in our series "On the 
Nonstationary Problem in Quantum Mechanics (Todorov, 1980, 1980, 1981, 1981). 
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where V,#(t') = (+~lv(t')lq~, >, o~ a = - o ~ ,  = ( E , -  E a ) / h ,  a~(t) = 
d#(t)exp[io~#t](~o~ =EB/h), d#(t) being the actual coefficients participating 
in the decomposition of the perturbed wave function ~p(t) over the com- 
plete set {~#(x)) [cf., e.g., (T4)], and dfl is a somewhat abstract but clear 
enough notation of integration over the said parameters. 

Consider now the case when the interaction between the particles of 
the system is (formally) included according to the law V(x, t)--- 
V(x)exp[et], V(x) being the interaction operator, x denoting all the 
degrees of freedom of the system of interest, and exp[et](-oo<t<O), 
e= +0, describing the specific adiabatic law of inclusion of V(x) (the 
moment of full inclusion being t = 0). In (T4) this law gave a transition of 
the system from an eigenstate of the nonperturbed Hamiltonian H i to an 
eigenstate of Hy =H i + V(x). We have exactly the same result in the 
continuous spectrum case. Indeed, applying the general formula (1) we 
obtain 

I~. ei~oteet 
Vll  o 

a~l)(t):h(%o,+ie ) (2) 

eit%~ote2et 
a(2)(t) : h2(O~o~ +2ie)  f(#) %o~V~V~~ + ie dfl (3) 

and so on. In moment t--0 the linear combinations with these coefficients 
a~ n) will lead to an eigenfunction of Hf corresponding to the same eigenen- 
ergy as that of the initial state ~P~0 as implied by the factor exp[i%~0t ] in all 
a~ n), n =  1,2,... (for the case of particle scattering this is shown in most of 
the books on quantum scattering theory). 

The transition probability density per unit time W~ ~ corresponding to 
the above a~ ~), n = 1,2 . . . . .  is given by 

Wppo d a(1) 2 =dt  ~ + a ( 2 ) + ' ' "  It-0 

2rr _ 1 c V, ttV~,o 2 
= - -  V, ,  + =  I - - d f l + " "  h2 o • j(#)6o~oa +ie 8(6~ (4) 

in moment t = 0  (and practically all finite t due to the factor exp[et], 
e---> + 0) of complete inclusion of V(x). The &function 8(%~o ) comes from 
expressions of the type 

1 aE 
lim m ~(X) (a>O,O<b<a) (5) 
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Really, when e--->+0 this expression tends to zero everywhere with the 
exception of point x =  0; it can be simply shown, besides, that an integra- 
tion of the left-hand side of (5) over x from minus to plus infinity will give 
unity, so that we have all the characteristic features of a 8 function. It is 
worth mentioning that the well-known expression 

lim = 8 ( x )  (6) 
,--,+0 ~r(x 2 + d )  

is a special case of (5) (when a=2b ) .  The above 8 functions guarantee 
energy conservation in the process. 

It can be shown that, as in (T4), the first-order results for Wp~ ~ of the 
different laws of a very slow (adiabatic) inclusion of the perturbation 
(interaction) coincide. This is done in the Appendix. 

It is well known, however, that in the specific case of a continuous 
degenerated energy spectrum one can use a very different model of 
inclusion of the perturbation interaction V(x) compared to the adiabatic 
ones. This model will give the same results for W~ ~ as V(x)exp[et] in any 
order of magnitude of perturbation theory. Namely, we assume that 
V(x, t )=0 ,  - o o  < t < 0 ,  and V(x, t ) =  V(x), t> 0 (a sudden inclusion of V 
in moment t = 0). We have then 

WV a~l)(t ) = - -  ( e io"~ -- 1) 
hfOVO v \ ] 

(7) 

l f( V~/~V~o(ei'~ 
a~2)(t) = h-~ ~)%o/j+ie %o~ 

e i o , t ~ t  - 1 
~o/~ ] dfl 

= 1  [ V"t~V~---'~~ e i '~176  dfl (8) 
h 2 J(B) ~%oB +ie O~o ~ 

where e = + 0; the appearing of ie in the denominator of the second equality 
(8) is explained, e.g., by Feinman and Hibbs (1965) [but one must bear in 
mind that in their expression (6.100), e.g., the second term is given with an 
erroneous sign]. The presence of a factor (e i~~176 1)/60~0 p will lead to the 
uncertainty relation AEAt~h  in the expression for W,~ ~ given below. It is a 
straightforward consequence of the well-known formula 

sin xt 
lim - -  = 8 ( x )  (9) 

t---> 0o ~ X  
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the application of which gives 

d 12 IV,,o= lim ~la~l)(t)+a<,2)(t)+ . . .  
l---~ CO 

2rr 1 r V,,/Y/~,,o 2 
= - -  v .  + -  J - -  

h z o h d(~) O~,o/~ + ie 3(~"~'~ 
( l O )  

[using the argumentation of Feynman and Hibbs (1965) one can see that 
(10) will coincide with (4) in any order of magnitude]. The 8 function in 
(10) plays the same role as the one in (4). 

The coincidence of the total expressions (4) and (10) has a clear 
physical sense. After a transitory period of time determined by the relation 
A E A t ~ h  the perturbing effects of the sudden inclusion of V(x) on the 
initial state of motion become negligible compared to the net effect of the 
potential for large time intervals and we gradually come to the quantities 
determined by V(x) only. In the case V(x)exp[et] we have always the net 
effect of V(x) only due to the smallness of e. The specific way of action 
leading to the 8 functions 8(~po) in the expressions for the different W~, ~ 
shows that we are really dealing with a scattering-and-reactions problem in 
which several initially noninteracting parts of a closed overall system 
(~i =~,o) come into contact with each other and, after interaction, some 
reaction products are scattered in far-off space regions where again no 
interaction exists and one may use, as before scattering, some "free" 
eigenfunctions of the energy operator (~f = ~b~). The conservation of energy 
in all such processes, guaranteed by 8(~,,o) on the other hand, shows that 
the problem can be solved in a static variant of a fixed eigenenergy too. 
The results for the transition rates given by the nonstatic and the static 
variants of scattering coincide. Having in mind the above discussion of the 
decreasing importance of initial perturbing effects we see that the said 
properties of V(x)exp[et] and the "instantaneous" potential show that 
coincidence with the static results has to be expected in an arbitrary 
process of a very slow inclusion of a potential V(x, t). This potential will 
be practically equal to V(x) in a sufficiently large time interval, so that we 
shall have the net effect about V(x) in this interval. This is demonstrated in 
the Appendix with the three cases examined there in the first order of 
nonstationary perturbation theory. 

It is relevant to return here to the postulates (1') and (2) in (T1) of 
present-day quantum theory. We shall denote them further as (A) and (B), 
correspondingly. It was argued in (T1) that (A) can lead to difficulties of 
both logics and specific numbers in some cases when one can formally use 
it. Basic requirements neglected by (A) such as conservation laws are taken 
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into consideration in (B) (T1). But there immediately appears a problem: 
How can one use (B) in the general case? The discussion of the nonsta- 
tionary models of scattering in the present Paper V shows that the results 
of quite different models coincide with those of the stationary method. 
This fact is important since it clearly demonstrates the significance of 
conservation laws in quantum mechanics. It implies that, most probably, 
(B) will give reliable results in such cases of a presence of a time-dependent 
interaction in different physical situations, in which conservation laws in 
the overall system are taken into consideration (e.g., energy conservation in 
a closed system consisting of atoms and photons). This may explain why the 
rule 2~r I V.012p(E~)/h of calculation of transition rates is really "golden," as 
Fermi called it; we have E~ =E~0 in this formula and energy conservation is 
taken into account in the corresponding integration 

12 - e o)p 

where o(E,), certainly, is a.relevant density-of-states function. 
The Schr6dinger equation (SE) for a part of an overall system, even 

when formally applicable [well-defined externally in respect to the subsys- 
tem field U(t)] cannot be relied on, generally, about the specific numerical 
probability values, contrary to the wide-spread belief that it can. The said 
common opinion is based on the concept that in a relevant process of 
averaging, the parameters of the (large) part of the overall system with 
which the subsystem of interest interacts disappear entirely from the 
problem and what remains is calculation of probability values with the 
help of (A) for our subsystem in the field U(t) without the necessity of any 
additional information. But a concept needs a proof in physics and one of 
the aims of our series of articles on the nonstationary problem in quantum 
mechanics was to demonstrate that some facts do not agree with the said 
opinion. Namely, in (T3) we came to disagreement with classical mecha- 
nics in the case of a quasiclassical motion, while in (T4) the application of 
the nonstationary SE to a part of a system led to the appearing of some 
transition probabilities which we qualified as nonphysical in the cases of 
an adiabatic (i.e., very slow but otherwise arbitrary) variation of the 
external field. This shows, at least, that the information only, necessary 
according to (A) for the complete determination of probability values, is in 
fact insufficient in the general case. The same applies to that part of the 
discussion in (T2) in which we showed that (A) cannot ensure an increase 
with time of the average value of the entropy operator S defined there. 
Indeed, if one attempts the transition probability values given by (A) he 
shall always have <S)t.0 = (S)t>o for arbitrary t (t--0 in the moment of a 
sudden increase of the volume in which our system is held). The increase 
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of (6~) with time is obtained with the help of the natural requirement that 
the final state to which our many-body system strives in the process of its 
irreversible evolution in the specific case examined is of (practically) the 
same energy as the initial one (in the initial volume), contrary to what the 
set of probabihties obtained with the help of  (A) gives. And last (but not 
least) in Appendix B of (T1) we discussed a situation in which a difficulty 
of logics exists if one relies only on the initial information necessary 
according to (A) for the complete solution of a problem in the case of a 
formal applicabihty of this postulate. Some additional information about 
the possible position of the particle in the moment of appearing of the 
perturbation is necessary in order to avoid the difficulty. Cases of this sort 
are very complex and one cannot be sure a priori that postulate (B) will be 
able to describe situations with such a precise and complicated conduct of 
the perturbing field. But the inference about the necessity of some addi- 
tional information (hidden variables) for the description of the conduct of 
simpler subsystems implied by the reinterpretation of the solutions of (B) 
given in (T1) is general and fully applies to the particle in the potential well 
described in the said Appendix. 

Some experimental facts discussed in (T1) seem to give evidence too 
about a strong inapplicability of (A) for the calculation of transition rates 
in the specific cases considered there. However, careful additional work is 
still necessary, in our opinion, in order to draw a precise picture of the 
actual state of affairs in the said field, as was pointed out in (T1). 

The problem of time irreversibihty discussed extensively in different 
papers of our series is connected with the behavior of a subsystem of a 
larger system in the process of its isolation from the remaining part. It is 
evident that in cases of quasi-instantaneous perturbations the theory of 
nonstationary perturbations, apphed to the overall system, provides a 
correct qualitative picture too of the way in which all the noninteracting 
subsystems of the said system reach states of fixed energies (AE A t~  h--see 
the discussion on this above; the way of application of perturbation theory 
leading to this relation is common for arbitrary systems). This picture 
should be valid in any case when one can discern physically a specific 
moment in the evolution of a closed system without changing with this its 
energy (Ef = E i)  even when the perturbation is not weak, since perturbation 
theory, clearly, gives evidence about a general phenomenon. The existence 
of this phenomenon exactly, combined with the lack of mutual influence 
postulated by conventional quantum mechanics itself [in the sense discussed 
in (T1)] of the conduct of noninteracting subsystems together with the 
requirement that a state of motion should be an objective characteristics of 
a system, equal for all observers, was employed in (T1), (T2), and (T4) in 
order to show that the SE does not give, generally, acceptable results about 
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evolution in time when applied to a part of an overall system. Indeed, the 
moduli of the coefficients of the corresponding wave packets in (T1) and 
(T2), representing the states of subsystems described by the SE in the case 
of variable external potentials U(t), do not depend on time in the specific 
cases of interest there, in contradiction with the physical sense of A E A t ~ h  
considered in the present paper and the above-mentioned requirements. On 
the other hand, the nonphysical terms resulting from the application of (A) 
to the cases discussed in (T4) are removed (on a heuristic basis) with the 
help of the concept about fundamental irreversibility of the basic evolution 
equation(s). Inherent time irreversibility in the conduct of any system (since 
any system can interact with other ones) with the exception of systems 
which have been isolated for a sufficiently large interval of time and have 
reached their "equilibrium" eigenstates (fixed E) is thus an important 
conceptin our series of articles on the nonstationary problem in quantum 
mechanics. This concept clearly indicates that present-day quantum theory 
is not a complete theory in accord with the Einstein-Podolsky-Rosen 
(1935) theorem. Namely, neither (A) nor (B) gives information about the 
specific way in which the concrete noninstantaneous irreversible reduction 
of some initial wave packet of a given subsystem to a fixed stationary state 
takes place. Indeed, (B) gives only some (correct) overall picture of all the 
possibilities and some qualitative information about the way in which the 
total system will come to a state of definite energy (the above uncertainty 
relation). But, as was emphasized in (T1), if something exists objectively 
(relaxation processes in subsystems), it certainly needs an objective descrip- 
tion. 
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APPENDIX 

We shall examine here the three specific adiabatic l a w s  o f  i n c l u s i o n  o f  

a perturbation V(x, t), x denoting all the degrees of freedom of the  s y s t e m ,  
considered in detail in (T4) in the case of a discrete energy spectrum. They 
are 

(a) V(x, 0=o,  t<o; V(x,O=tV(x)/r, o< t<r ,  
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(b) V(x, t )=O, t < 0 ;  V ( x , t ) = t Z V ( x ) / T  2, 0 < t < r ,  T--->oo 

(c) V(x, t )=O, t<O; V(x , t ) - -V (x ) s i n t ,  O < t < T ,  T--> oo 

w--~r/2T. 

In the case (a) we have 

l eot ] 
a~0(t) -- hTw~o~ te i~ ,~  iw~ ~ 1) (A.1) 

d a(D(t) 2 = lira [V~~ " 
lim dt v \ -' t - -  T ~ - - ~ - ~ 2 - ' ~ " -  ( l  - cos w,,ot)t r 

T--> oo T---~ oo r / - /  t.~po p - -  

2 ~  
= h---~ IV~,o 12 8(W,,o) (A.2) 

where the well-known expression 

sin z x T 
lim ~ = 8 ( x )  (A.3) 

T---~oo 7r rx  2 

is applied. Equation (A.2) coincides with the first-order result for V(x, t)--- 
V( x ) exp[ et ]. 

In the case (b) one obtains 

a~~ o-- e i'~176176 (e"~176 1) (A.4) 
0"~2v 0 

lim d 41Vvvo[2 ( sinw~oT ) 
r-,~o -~ la~')(t)12-r-'- lim 2 2 1 

T~ oo h Twvo ~ WVVo T 

sin W~,oT ) 
�9 4 [  Vvv ~ [ 2 1 -- COS W~oT+ cos w~oT-- - -  

T~oo 2 2 o)vvoT h TW~o ~ 

(A.5) 

The sum of the first two terms in the brackets gives, evidently, 
4~r I V.~ ~ t2~(W~o/)h 2 when multiplied by 41V.,ol 2/h2 TW~o~,2 T~oo [see equa- 
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tion (A.2)]. When T---~oo the term 

sin %~oT 1 T cos .oT_ ] 
T2to;Zpo 

tends to zero for every %~o~0 and the integral 

T %~oT - ~ .d%~o- ( = - -  J(~ 2-~'.2 (cos sin %,oT ~ ~ 1 (sinx) ~r 
-oo T w~, o ~ w,,oT ] -2a, 0 x d  x 2 

(A.6) 

(x=%.oT) .  This shows that 

2 [ sin w~oT 
lira 

T--->oo qrToJ~v ~ 
cos W~oT ) =8(W~o) (A.7) 

is a representation of the 6 function. Combining the above expressions we 
come once again to the result (A.2), this time for the t2/T 2 law. 

In the case (c) one obtains 

iVan~ ei('~176176 ei('~176176 (A.8) 
a~0(t) = - - ~  t%~o+W - %~o_ w 

d ( 1 ) 2  -]VPv~ 1 1 )cos%v0T (A.9) 
-~ la~ (t)lt=r- h------Y-- ~0+~0 ,o~0-------~ 

Because of the fast oscillations of cos W~oT with the variation of %~o 
when T~oo, only the region %~o~0 is of interest to us. Integration over 
O)pv ~ gives  

oo 1 1 cos~ ~ ] do~r ~ 
oo w~ ~ + r to~ ~ -- to 

=~rfo~176 x+l~ dx=2~r 

(A.IO) 

where we have used the formula 4.382.1 (p. 597) 

t r r  . f~176 I x§ sinbxdx= ~smab 
"o I x -a  

(a>0 ,  b>0)  (A.11) 
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In the manual of Gradshtein and Ryzik (1971). Thus we come once again 
to the formula 2~rlV.ol 2 6(,o.o)/h2, the expression 

c~  )=st %) 
- -  ~ 0 ~ p  ~ 

(A.12) 

being a representation of the 8 function. 
As the reader has most probably noticed, the terms on the right-hand 

side of equations (A.1), (A.4), and (A.8) which do not contain a factor of the 
type exp[i%~0t ] play an essential role in ensuring the coincidence of the 
first-order expressions a~l)(t) in these cases with that for the case 
V(x)exp[et]. The removal of similar terms, necessary in the discussion in 
(T4), is inadmissible here since they are used in fact for the calculation of 
the limits of 

d a(1)[t,  ~ 2 for t%.o-->0 dt . k ] t ~ T  

(being the only ones ~ 0  when T-->oo) in which cases exp[i%~ot ] --const--- 1 
in all the said terms. In such a way when one is interested in the values of 
a~~ for E,--E,o one cannot say that the terms of the type exp[it%,0t] 
(tO, o---0) are of a different nature compared to terms that do not contain 
such a factor, and all possible terms must be taken into consideration. The 
specific character and purpose of our way of proceeding in the case when 
an isolated system is of interest (presence of a continuous spectrum) makes 
thus unneccessary and impossible any renormalization procedure in accord 
with the idea in the present paper that nonstationary perturbation theory 
will lead to physically sensible results when applied to such a system. Let 
us recall that the nonphyiscal terms in (T4) appeared in the case of a 
system in a varying external field when no mechanical conservation laws 
can be required for the subsystem formed by the said system in the 
time-dependent field. 
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